Thursday, 11 September 2014

Fungsi Logaritma

Fungsi Logaritma
Apabila terdapat fungsi eksponen  f  yang memetakan bilangan real  x  ke  ax (ditulis f(x) = ax, dengan a > 0 dan a ≠ 1), inversnya adalah fungsi logaritma  g  yang mengawankan bilangan real  x  ke  ªlog x (ditulis  g(x) =  ªlog x).
Misalkan diketahui fungsi  f(x) = 3x  dengan daerah asal (domain) Df  = {-3, -2, -1, 0, 1, 2, 3 }. Hubungan antara x dengan f(x) = 3x  dapat dilihat dalam tabel berikut.
Tabel 1
X    -3    -2    -1    0    1    2    3
f(x) = 3x    1/27    1/9    1/3    1    3    9    27

Pada tabel terlihat adanya korespondensi satu-satu antara  x  dan f(x) = 3x. Sehingga dapat dikatakan bahwa fungsi eksponen f(x) = 3x  merupakan fungsi bijektif. Karena  f(x) = 3x merupakan fungsi bijektif, terdapat fungsi invers  f-1 yang memetakan setiap anggota {1/27, 1/9, 1/3, 1, 3, 9, 27} dengan tepat satu anggota {-3, -2, -1, 0, 1, 2, 3} seperti diperlihatkan pada tabel berikut.
Tabel 2
f(x)= 3x    1/27    1/9    1/3    1    3    9    27
g(x)    -3    -2    -1    0    1    2    3

Jika fungsi invers dari f(x) = 3x disebut fungsi g(x). Dengan demikian, g(x) dapat ditentukan sebagai berikut.
y = f(x) = 3x
 log y =  x logx
 log y =  x log 3
  x =  log y
             log 3
 x = ³log y
 f-1 (y) = ³log y
 f-1 (x) = ³log x
Jadi, invers dari f(x) = 3x adalah g(x) = f-1(x) = ³log x yang merupakan fungsi logaritma dengan bilangan pokok 3.
Berdasarkan uraian diatas, pengertian fungsi logaritma adalah suatu fungsi yang memetakan setiap  x  bilangan real dengan aturan g(x) = alog x,  x > 0, a > 0, a ≠ 1.
Contoh :
 1.   Diketahui f(x) =     5log x        . Tentukan f(x) + f (5/x)
                                 1- 2 5log x
Penyelesaian:
 f (5/x)   =      5log  5/x
               1- 2  5log  5/x
             
            =      5log 5 – 5log x
                1- 2 (5log 5 – 5log x)
                   =        1 -  5log x
                        1 - 2 (1 – 5log x)
                   =        1 – 5log x
                        1 – 2  +  2 5log x
                   =       1 – 5log x
                        -1  +  2 5log x
        f(x)  +  f(5/x)    =       5log  x           +      1 – 5log x
                              1- 2  5log  x         -1  +  2 5log x
                      
                         =        5log  x        _      1 + 5log x
           
            



                              1- 2  5log  x          1  -  2 5log x

                        =   -1  +  2 5log  x
1         -  2 5log x
                               =   _    1- 2  5log  x
                                          1- 2  5log  x
                              =  - 1
Dengan cara ringkas, dapat dikerjakan sebagai berikut. Karena pada fungsi logaritma berlaku  f (x/y) = f(x)  -  f(y),  maka  f(x) +  f(5/x) = f(x) + f(5) - f(x)= f(5).
  Jadi,  f(x) +  f(5/x)  =  f(5)  =      5log 5       =     1      =     - 1
                                              1- 2  5log 5        1 – 2
2.   Diketahui f(x) =  4log (x2 -  8x  +  16). Tentukan titik potong kurva fungsi f dengan :  a. sumbu X                           b. sumbu Y
      Penyelesaian:
a.       Titik potong dengan sumbu X. Syaratnya f(x) = 0. Oleh karena itu,
       f(x) = 4log (x2 – 8x  +  16)
  0 = 4log (x2 – 8x  +  16)
  4log (x2 – 8x  +  16) = 4log 1
  x2 – 8x  +  16 = 1
  x2 – 8x  +  15 = 0
  (x – 5)(x – 3) = 0
  x = 5  atau  x = 3
Jadi, titik potongnya dengan sumbu X adalah  (5, 0) dan (3, 0).
b.      Titik potong dengan sumbu Y  syaratnya, x = 0. Oleh karena itu,
f(x) =  4log (x2 – 8x  +  16)
       =  4log (02 – 8(0) + 16)
       =  4log 16
       =  4log 42
          =  2
Jadi, titik potongnya dengan sumbu Y adalah (0, 2).

Pengertian Logaritma

 Pengertian Logaritma
      Logaritma adalah operasi matematika yang merupakan kebalikan atau invers dari eksponen atau pemangkatan.
Perhatikan hal berikut.
23 = 8
34 = 81
42 = 16
      Jika ruas kiri dipertukarkan tempatnya dengan ruas kanan dan sebaliknya menjadi:
  8 = 23 ;  81 =34  ; 16 = 42
  8 = 23  dapat ditulis sebagai  2log 8 = 3
81 = 34  dapat ditulis sebagai  3log 81 = 4
16 = 42  dapat ditulis sebagai  4log 16 = 2
(2log 8  dibaca “logaritma dari 8 dengan bilangan pokok 2”)
      Hal ini berarti mencari logaritma suatu bilangan positif  b  dengan bilangan pokoka sama dengan mencari pangkat dari b dalam bilangan pokok a tersebut.
Secara umum rumus dasar logaritma dapat ditulis:
                           alog b = c      b = ac
               a disebut bilangan pokok (basis) logaritma, a > 0 , a ≠ 1, a є R
               b disebut numerus, yaitu bilangan yang akan dicari logaritmanya, b > 0,     b є R
               c disebut hasil logaritma